ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jonathan E. Kinsey, Gary M. Staebler, Ronald E. Waltz
Fusion Science and Technology | Volume 44 | Number 4 | December 2003 | Pages 763-775
Technical Paper | doi.org/10.13182/FST03-A414
Articles are hosted by Taylor and Francis Online.
Fusion power predictions are presented using the GLF23 drift-wave transport model for several next-step tokamak designs including ITER, FIRE, and IGNITOR. The GLF23 model has been renormalized using recent gyrokinetic simulations and a database of nearly 50 H-mode discharges from three different tokamaks. The renormalization reduces the ion temperature gradient/trapped electron mode (ITG/TEM)-driven transport by a factor of 3.7 while electron temperature gradient (ETG) mode transport is increased by a factor of 4.8 with respect to the original model. Using the renormed model, the fusion power performance is uniformly assessed, and the pedestal requirements are summarized for each device. The renormed model is still quite stiff and yields somewhat more optimistic predictions for next-step burning plasma experiments. The consequences of stiff transport in the plasma core are discussed. A fusion fit formula is derived whereby the GLF23 results follow a universal stiff model curve for the normalized fusion power versus pedestal temperature.