ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Jonathan E. Kinsey, Gary M. Staebler, Ronald E. Waltz
Fusion Science and Technology | Volume 44 | Number 4 | December 2003 | Pages 763-775
Technical Paper | doi.org/10.13182/FST03-A414
Articles are hosted by Taylor and Francis Online.
Fusion power predictions are presented using the GLF23 drift-wave transport model for several next-step tokamak designs including ITER, FIRE, and IGNITOR. The GLF23 model has been renormalized using recent gyrokinetic simulations and a database of nearly 50 H-mode discharges from three different tokamaks. The renormalization reduces the ion temperature gradient/trapped electron mode (ITG/TEM)-driven transport by a factor of 3.7 while electron temperature gradient (ETG) mode transport is increased by a factor of 4.8 with respect to the original model. Using the renormed model, the fusion power performance is uniformly assessed, and the pedestal requirements are summarized for each device. The renormed model is still quite stiff and yields somewhat more optimistic predictions for next-step burning plasma experiments. The consequences of stiff transport in the plasma core are discussed. A fusion fit formula is derived whereby the GLF23 results follow a universal stiff model curve for the normalized fusion power versus pedestal temperature.