ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
D. N. Bittner, G. W. Collins, J. D. Sater
Fusion Science and Technology | Volume 44 | Number 4 | December 2003 | Pages 749-755
Technical Paper | doi.org/10.13182/FST03-A412
Articles are hosted by Taylor and Francis Online.
Cryogenic targets for the National Ignition Facility require uniform solid layers inside spherical capsules at temperatures ~1.5 K below the triple point of hydrogen. Uniform layers have been successfully formed near the triple point. However, upon subsequent cooling the layers degrade. We report here recent attempts to form uniform deuterium hydride (HD) layers 1.5 K below the triple point using infrared (IR) radiation. Pumping the IR collisionally induced vibration-rotation band of solid HD contained inside a transparent plastic shell generates a volumetric heat source in the HD lattice. This in turn allows the formation of a spherical crystalline shell of HD inside the transparent plastic shell. HD layers ~50 m thick have been formed near the triple point and slowly cooled 1.5 K under high IR power without layer degradation.