ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Yasushi Yamamoto, Hiroki Konda, Yuki Matsuyama, Hodaka Osawa, Masami Ohnishi
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 773-779
Technical Note | doi.org/10.1080/15361055.2017.1347461
Articles are hosted by Taylor and Francis Online.
The first tritium burning experiments of the discharge type fusion neutron source were conducted in January 2015, using a 93% deuterium and 7% tritium gas mixture. In order to conduct the experiment in a closed environment, a gas feed and exhaust system using non-evaporable getter material was prepared. This system was designed to minimize tritium usage and produce measurable changes in the neutron production rate on the basis of the dependence of the equilibrium pressure on getter temperature as included in the manufacturer’s data sheet. However, the present experiments revealed that the gas supply was insufficient and that the discharge duration was limited to about 2 minutes by the pressure drop during discharge.
To determine the cause, verification experiments using hydrogen and deuterium gas were performed. It was found that the pressure variation with getter temperature could be mimicked by exploiting isotope effects and adjusting the hydrogen/deuterium concentration in the getter material according to the gas released into the vacuum chamber. Moreover, prolonged maintenance of a discharge was demonstrated by roughly tripling the amount of gas.
The tritium concentration in the gas mixture, estimated on the basis of the present results, varied between 1.5% and 6.7% according to the assumptions used.