ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Sungjin Kwon, Kihak Im, Jong Sung Park
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 737-746
Technical Note | doi.org/10.1080/15361055.2017.1350479
Articles are hosted by Taylor and Francis Online.
A pressurized water cooling divertor target applying the tungsten monoblock type has been primarily considered in the Korean fusion demonstration reactor (K-DEMO). The target peak heat flux locally concentrated around the striking point was set to 10 MW/m2 in K-DEMO divertor system. In a previous study [Im et al., IEEE Trans. Plasma Sci., Vol. 44, p. 2493 (2016)] the thermomechanical analyses for a high heat flux unit of K-DEMO divertor target applying reduced activation ferritic martensitic (RAFM) steel as heat sink material were carried out to verify the thermal and mechanical stabilities. The results of the thermomechanical analyses showed that the stabilities of the divertor target design applying the derived design parameters were close to the allowable limits, since the thickness of RAFM coolant tube was too thin due to the low thermal conductivity of RAFM steel. The aim of this study is to propose the structurally modified divertor concept switching the flowing path of coolant from poloidal direction to toroidal direction. By changing the flow direction, the design and material could be independently selected by the local intensity of the heat flux. The CuCrZr and RAFM steel were employed to the peak heat flux region and the non-peak heat flux region as a heat sink material, respectively. The effects of the modified concept were assessed by performing thermohydraulic analyses. The result showed that the modified concept more efficiently dissipated the heat flux compared to the conventional concept.