ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
S. Woodruff, J. E. Stuber, C. Bowman, P. E. Sieck, P. A. Melnik, C. A. Romero-Talamás, J. B. O’Bryan, R. L. Miller
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 705-712
Technical Note | doi.org/10.1080/15361055.2017.1350488
Articles are hosted by Taylor and Francis Online.
A design point is presented here for a prototype fusion neutron source for waste transmutation ( n/s), based on the adiabatic compression of a compact torus (spheromak). The design utilizes the CORSICA (2D equilibrium) and NIMROD (3D time-dependent MHD) codes as well as analytic modeling with target parameters Rinitial = 0.5 m, Rfinal = 0.167 m, Tinitial = 0.4 keV, Tfinal = 4 keV, ninitial = 2 × 1020 m–3 and nfinal = 50 × 1020 m–3, with radial convergence of C = 3. 3D time-dependent simulations of spheromak compression agree well with analytic models for adiabatic compression, if the run-in time . Knowing required, we design coils and passive structure (with CORSICA) to ensure stability; then design the capacitor bank needed to both form the target plasma and drive coils. We specify target parameters for the compression in terms of plasma beta, formation efficiency and energy confinement.