ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Kio Takai, Yoshiki Indou, Kazuhisa Yuki, Koichi Suzuki, Akio Sagara
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 699-704
Technical Note | doi.org/10.1080/15361055.2017.1352430
Articles are hosted by Taylor and Francis Online.
This study evaluates convective and boiling heat transfer characteristics of a water impinging jet flow in porous media in order to remove the heat flux of 10 MW/m2 imposed to fusion divertors. The metal porous media with complicated microchannels have large heat transfer surface due to fin effect and superior mixing effect of fluid, which enhances not only the convective heat transfer but also the boiling heat transfer by improving the evaporation rate of the cooling liquid. In a proposed heat removal device called EVAPORON-3-Type3, the cooling water is supplied as an impinging jet flow into the porous medium, which is a two-layered copper particle bed, and the generated vapor is discharged through high porosity gaps on the heat transfer surface. As a result, the convective heat transfer coefficient is improved by 1.6 times compared with that of an impinging jet flow without the copper particle bed. In the boiling heat transfer regime, the critical heat flux is increased by 1.5 times and the heat flux of 8.4 MW/m2 is achieved under low velocity and highly subcooled conditions though it’s not maximum.