ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Heiko Neuberger, Joerg Rey, Manuel Hees, Edeltraud Materna-Morris, Daniel Bolich, Jarir Aktaa, Andreas Meier, Stephen Fischer, Cornelia Schorle, Uwe Fuhrmann, Rainer Heger, Ivo Dlouhý, Ludek Stratil, Bernhard Kloetzer
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 667-672
Technical Note | doi.org/10.1080/15361055.2017.1350521
Articles are hosted by Taylor and Francis Online.
The development of fabrication technologies for ITER and DEMO Blanket concepts is an activity followed by the KIT since a long time. A variety of fabrication technologies has been developed and qualified in strong collaboration with industry. Besides the standard technologies, an activity has been launched to explore the capabilities of generative fabrication procedures such as Laser Beam Melting (LBM) and Selective Laser Sintering (SLS).
To manufacture demonstrator parts for Blankets by LBM /SLS, EUROFER (a Reduced Activation Ferritic Martensitic/RAFM steel applied e.g. in ITER) has been produced as powder metallurgical product. With this material, test parts have been realized. The test program started with solid parts and simple geometries used for extraction of specimen for material qualification purpose. Later, more complex parts were fabricated to investigate the feasibility of hollow and double walled structures and components with internal channel structures. Finally, blanket relevant part segments (e.g. for the Stiffening Plates) with meandering cooling channel structures and Flow Channel Insert segment demonstration parts for the EU Helium Cooled Pebble Bed and the Dual Coolant Lithium Lead Breeder Blanket concepts for DEMO have been fabricated.
First preliminary qualification activities have been concluded using test procedures applied e.g. for the qualification of welding seams such as Tensile – and Charpy tests, macro- and micro structure investigation or hardness measurement. The findings have been compared to standard material properties of EUROFER in order to quantify the fabrication results. Material properties of ~ 80% and more, compared to standard rolled EUROFER with comparable heat treatment history could be demonstrated in case of Tensile- and Yield- strength, total strain after fracture as well as energy consumption in Charpy tests.
Also the joining of generatively fabricated sub-components together with conventionally fabricated EUROFER parts by Electron Beam welding has been investigated in order to test the option of the fabrication of hybrid components. These hybrid components are intended to combine parts with straight channels fabricated by Electrical Discharge Machining together with generative fabricated parts with complex structures of cooling channels (e.g. nested U-shaped flow paths) which cannot be realized using standard machining technologies.
This technical note reports the first promising qualification results of generatively fabricated EUROFER parts. Also the weldability of generative fabricated parts and conventionally fabricated EUROFER has been demonstrated. Preliminary qualification results of the welding are shown, and possibilities for experimental qualifications are discussed.