ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
C. Koehly, L. Bühler
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 660-666
Technical Note | doi.org/10.1080/15361055.2017.1350477
Articles are hosted by Taylor and Francis Online.
The dual-coolant lead lithium (DCLL) blanket in which the eutectic lead-lithium alloy is used as tritium breeder and coolant is a promising concept for applications in fusion power plants. The interaction of the moving electrically conducting liquid metal with the plasma-confining magnetic field induces electric currents and creates strong electromagnetic Lorentz forces opposing the flow. This may lead to high magnetohydrodynamic (MHD) pressure drops. Efficient cooling requires a sufficiently high flow velocity and, under these conditions, if currents find a shortcut through electrically conducting walls, the pressure drop will be very large. One way to reduce the MHD pressure drop in ducts is to decouple electrically the coolant flow from the load-carrying walls by insulating flow channel inserts (FCI). In order to demonstrate the capability of pressure drop reduction by FCIs in 3D MHD flow, a test section is currently being designed and manufactured for experiments in the MEKKA laboratory at the Karlsruhe Institute of Technology. The used FCIs are of sandwich-type with a ceramic layer protected from both sides by thin sheets of steel to prevent direct contact of the insulator with liquid metal. This technical note focuses on fabrication issues of sandwich-type flow channel inserts for circular pipes and shows methods and techniques for successful manufacturing.