ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
K. Holtrop, D. Buchenauer, C. Chrobak, C. Murphy, R. Nygren, E. Unterberg, M. Zach
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 634-639
Technical Paper | doi.org/10.1080/15361055.2017.1347456
Articles are hosted by Taylor and Francis Online.
Future tokamak devices are envisioned to utilize a high-Z metal divertor with tungsten as the leading candidate. However, tokamak experiments with tungsten divertors have seen significant detrimental effects on plasma performance. The DIII-D tokamak presently has carbon as the plasma facing surface but to study the effect of tungsten on the plasma and its migration around the vessel, two toroidal rows of carbon tiles in the divertor region were modified with high-Z metal inserts, composed of a molybdenum alloy (TZM) coated with tungsten. A dedicated two week experimental campaign was run with the high-Z metal inserts. One row was coated with tungsten containing naturally occurring levels of isotopes. The second row was coated with tungsten where the isotope 182W was enhanced from the natural level of 26% up to greater than 90%. The different isotopic concentrations enabled the experiment to differentiate between the two different sources of metal migration from the divertor. Various coating methods were explored for the deposition of the tungsten coating, including chemical vapor deposition, electroplating, vacuum plasma spray, and electron beam physical vapor deposition. The coatings were tested to see if they were robust enough to act as a divertor target for the experiment. Tests included cyclic thermal heating using a high power laser and high-fluence deuterium plasma bombardment. The issues associate with the design of the inserts (tile installation, thermal stress, arcing, leading edges, surface preparation, etc.), are reviewed. The results of the tests used to select the coating method and preliminary experimental observations are presented.