ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
A. Khodak, P. Titus, T. Brown, J. Klabacha, H. Nielsen, X. Cheng, S. Liu
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 628-633
Technical Paper | doi.org/10.1080/15361055.2017.1350478
Articles are hosted by Taylor and Francis Online.
Initial China Fusion Engineering Test Reactor (CFETR), blanket design, includes water-cooled ceramic breeder (WCCB) blanket operating in pre-superheated regime. This condition allows efficient cooling; however it requires accurate control and analysis to avoid zones with excessive heat flux. Analysis of the coolant flow and heat transfer in CFETR Pre-Superheated Blanket was performed using ANSYS CFX and included: 3D coolant flow analysis, external volumetric and surface heating effect, and two-phase wall boiling. ASIPP CAD Model imported directly into ANSYS Workbench Design Modeler as a STEP file. Fluid volume is created using Design Modeler Fill operation, and converting Inlet and Outlet surfaces. Meshing was performed using CFX method available within the framework of the ANSYS mesh generator. Application of tetrahedral elements for meshing of the internal regions allowed automatic mesh generation. Advanced sizing functions were used with automatic mesh inflation depending on wall proximity and curvature. Conjugated heat transfer analysis was performed including solution of heat transfer equations in solid and liquid parts, and solution of the flow equations in the liquid parts. Coolant flow in that was assumed turbulent and was resolved using Reynolds averaged Navier-Stokes equations with Shear Stress Transport turbulence model. RPI model for wall driven boiling is used. Inhomogeneous two-phase flow is resolved solving two sets of momentum and energy equations for liquid and steam. Results showed ability of the model to simulate two-phase boiling flow in complex configuration.