ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
M. Harb, L. El-Guebaly, A. Davis, P. Wilson, E. Marriott, J. Benzaquen, FESS-FNSF Team
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 510-515
Technical Note | doi.org/10.1080/15361055.2017.1333846
Articles are hosted by Taylor and Francis Online.
Two issues related to neutronics analysis of fusion systems were addressed for the purpose of physical design iterations as well as plant operation: tritium self-sufficiency and shielding of the inboard magnet. State-of-the-art modeling/analysis tools facilitated a full 3-D neutronics analysis of the latest FESS-FNSF design. The first stage of the analysis involved the selection of materials for the first wall and blanket along with shielding materials to protect the magnet based on extensive 1-D analyses. The second stage is a stepwise workflow to estimate the overall tritium breeding ratio with high fidelity. It involved a bottom-up approach by coupling the CAD model with the 3-D MCNP code using DAGMC and adding the relevant design details in steps to assess the effect of such details on the tritium breeding ratio. The final stage involved calculations of the values of damage parameters at specific components: the first wall, the vacuum vessel, and magnet.