ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
G. L. Kulcinski, J. F. Santarius, K. Johnson, A. Megahed, R. L. Bonomo
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 455-460
Technical Paper | doi.org/10.1080/15361055.2017.1333862
Articles are hosted by Taylor and Francis Online.
This paper describes a system to detect landmines or IEDs by the use of small DD or DT neutron sources carried by a drone. The neutron source is powered by beaming RF or laser energy, at a distance of up to a km from the target, to a relay drone high (≈ 100 meters) above the neutron drone that converts the RF energy to electricity. The relay drone uses the electricity to generate another set of RF waves, and sends the energy down to the neutron drone to power the Inertial Electrostatic Confinement (IEC) fusion neutron generator. The neutrons emitted by the IEC generator interrogate the ground below the mobile neutron drone through neutron activation and the orbiting detector drones collect the gamma ray signals to determine the composition and location of the objects below. When the N/C/O signal is close to known chemical explosives signatures, the object is tagged for further investigation.