ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Matt K. Michalak, Aaron N. Fancher, Gerald L. Kulcinski, John F. Santarius
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 449-454
Technical Paper | doi.org/10.1080/15361055.2017.1330609
Articles are hosted by Taylor and Francis Online.
The University of Wisconsin–Madison inertial electrostatic confinement fusion device HOMER was used to perform current scans at low and moderate pressures, 0.3 and 1.0 mTorr of deuterium, in which the cathode voltage, current, and pressure were carefully controlled. The data was taken in short intervals to avoid the degrading effect of chamber heating on the fusion rate. Low pressure operation should harden the deuterium energy spectrum, but the low pressure also reduces target density. The results showed the fusion rates for 0.3 mTorr are about half that at 1 mTorr. Also, the 6 low pressure current scans had confirmed the approximately linear neutron production rates with respect to current. All 6 of the 1 mTorr current scans showed trends of slightly above linear neutron rates. Also, a new IEC steady state D-D neutron production record of 2.5 × 108 n/s was set at 150 kV, 100 mA, and 1.0 mTorr.