ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Matt K. Michalak, Aaron N. Fancher, Gerald L. Kulcinski, John F. Santarius
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 449-454
Technical Paper | doi.org/10.1080/15361055.2017.1330609
Articles are hosted by Taylor and Francis Online.
The University of Wisconsin–Madison inertial electrostatic confinement fusion device HOMER was used to perform current scans at low and moderate pressures, 0.3 and 1.0 mTorr of deuterium, in which the cathode voltage, current, and pressure were carefully controlled. The data was taken in short intervals to avoid the degrading effect of chamber heating on the fusion rate. Low pressure operation should harden the deuterium energy spectrum, but the low pressure also reduces target density. The results showed the fusion rates for 0.3 mTorr are about half that at 1 mTorr. Also, the 6 low pressure current scans had confirmed the approximately linear neutron production rates with respect to current. All 6 of the 1 mTorr current scans showed trends of slightly above linear neutron rates. Also, a new IEC steady state D-D neutron production record of 2.5 × 108 n/s was set at 150 kV, 100 mA, and 1.0 mTorr.