ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
L. Savoldi, R. Bonifetto, A. Brighenti, V. Corato, L. Muzzi, S. Turtu’, R. Zanino, A. Zappatore
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 439-448
Technical Paper | doi.org/10.1080/15361055.2017.1333866
Articles are hosted by Taylor and Francis Online.
The design of a suitable quench protection system is fundamental for the safe operation of superconducting magnets and in turn requires the accurate simulation of the quench transient. The quench propagation in a toroidal field (TF) coil for the future European fusion reactor (EU DEMO) is analyzed here considering the latest, layer-wound winding pack (WP) design proposed by ENEA. The thermal-hydraulic model of a TF coil implemented in the 4C code is updated by including the external cryogenic circuits of the WP and of the casing cooling channels and proposing a preliminary layout of the quench lines. Three different locations are considered for the quench initiation: maximum temperature margin in the WP, and minimum and maximum temperature margin on the same turn of the innermost layer. The evolution of the main electrical and thermal-hydraulic parameters is simulated, such as voltage along each layer, quench front propagation both along and across the layers, hot spot temperature, pressurization of the coil and coolant mass flow rate at the coil boundaries, so that the 4C code provides a reliable (in view of its validation) and detailed virtual monitor of what happens inside the coil during the quench transient. In all cases considered, the ENEA design is predicted to satisfy the present (i.e., ITER) design criteria concerning the maximum allowed hot spot temperature.