ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Gregg A. Morgan, Brittany J. Hodge, Anita S. Poore
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 426-433
Technical Paper | doi.org/10.1080/15361055.2017.1333858
Articles are hosted by Taylor and Francis Online.
A prototype Pd-Ag diffuser manufactured by Power and Energy was evaluated for performance characterization testing at the Savannah River National Laboratory (SRNL). The prototype Pd-Ag diffuser was characterized to determine the overall performance as a function of the permeation of hydrogen through the membrane. The tests described in this report consider the effects of feed gas compositions, feed flow rates, pump type and internal tube pressure on the permeation of H2 through the Pd-Ag tubes.
For the 96% H2/4% N2 mixtures, nearly all of the H2 permeated through the membrane at flow rates up to 3000 sccm. However, results for the 50% H2/50% N2 composition show that 100% permeation is only achieved up to a flow rate of 1000 sccm. A significant reduction in the hydrogen permeation was observed for the 2% H2/98% N2 composition. This Pd-Ag diffuser design is not suitable for a tritium purification system within the fusion energy fuel cycle. Typical tritium purification systems can be expected to see a range of hydrogen isotope concentrations and this particular prototype diffuser is only suitable for process streams containing high concentrations of hydrogen isotopes.
Significant efforts should be undertaken to identify additional commercial vendors for Pd-Ag diffusers. It is of critical importance to identify, procure, and test different Pd-Ag designs that can perform well over a range of hydrogen isotope concentrations for tritium gas processing applications.