ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Hongjie Zhang, Alice Ying, Mohamed Abdou, Masashi Shimada, Bob Pawelko, Seungyon Cho
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 416-425
Technical Paper | doi.org/10.1080/15361055.2017.1333826
Articles are hosted by Taylor and Francis Online.
A mathematical model for permeation of multi-components (H2, T2, HT) through a RAFM (Reduced activation ferritic/martensitic) membrane was described based on kinetic theory. Experimental conditions of tritium permeation for ARAA (Advanced Reduced Activation Alloy) material performed at INL were recreated in simulations for model validation. Both numerical simulations and experimental data indicated that the presence of hydrogen reduces tritium permeation rate significantly in low tritium partial pressure with 1000 ppm (0.1%) hydrogen-helium gas mixture at 1atm. Experimental behavior of tritium permeation flux dependence on tritium isotope partial pressure confirmed the kinetic theory. i.e., it still follows diffusion-controlled, square root dependence, with T2 partial pressures and a linear dependence HT pressure even though it is in a diffusion-controlled regime. In addition, the numerical model was validated with literature data for mono-isotope permeation through oxidized and clean MANET II (MArtensitic for NET) samples under surface-controlled and diffusion-controlled regimes. The simulation results agreed well with the experimental data, which indicated that the mono permeation rate through the oxidized sample is much lower (~2 orders) than clean sample and the permeation rate is proportional to p1 and p0.5 for oxidized and clean MANET II samples, respectively.