ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Radiant secures funding, moves toward microreactor testing in INL’s DOME
Radiant Industries has announced a $100 million Series C funding round to be used primarily to complete its Kaleidos Development Unit (KDU) microreactor for testing in Idaho National Laboratory's Demonstration of Microreactor Experiments (DOME) facility within two years.
Saerom Kwon, Masayuki Ohta, Satoshi Sato, Chikara Konno, Kentaro Ochiai
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 362-367
Technical Paper | doi.org/10.1080/15361055.2017.1330622
Articles are hosted by Taylor and Francis Online.
A new benchmark experiment on lead with DT neutrons was designed and carried out with a large lead assembly covered with Li2O blocks at JAEA/FNS to validate nuclear data of lead for measurement of reaction rates without impact of background neutrons. The experiment was analyzed by using the MCNP5-1.40 code with the latest nuclear data libraries, ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0. The calculated reaction rates underestimated the measured ones with the depth. Moreover, the tendencies of C/Es were different among the nuclear data libraries. In order to find out the reasons of the differences, we examined reaction cross-sections of lead in the nuclear data libraries in detail. The potential reactions to cause the underestimation issue of the calculated reaction rates were indicated through this study.