ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
L. El-Guebaly, M. Harb, A. Davis, J. Menard, T. Brown
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 354-361
Technical Paper | doi.org/10.1080/15361055.2017.1333864
Articles are hosted by Taylor and Francis Online.
The Fusion Nuclear Science Facility (FNSF) is viewed as an essential element of the US developmental roadmap to fusion energy. The spherical tokamak-based FNSF has been designed through a national collaborative effort led by the Princeton Plasma Physics laboratory. High-temperature superconducting (HTS) magnets are potentially attractive for such applications. Among other aspects, the magnet shielding and tritium breeding assessments represent key elements for achieving the design engineering objectives. Numerous inboard shielding and cooling materials have been examined to select an optimal shield that protects the inboard HTS magnet and in the meanwhile enhances the outboard breeding. The breeding blanket of choice is the dual-cooled lead lithium (DCLL) blanket. Our 3-D neutronics model included all blanket internals in great details along with nine specialized ports for blanket testing, materials testing, plasma heating, and current drive. The inclusion of a thin DCLL blanket on the inboard side was deemed necessary to achieve an overall tritium breeding ratio in excess of unity.