ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
B. Zhao, S. A. Musa, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 294-299
Technical Paper | doi.org/10.1080/15361055.2017.1333827
Articles are hosted by Taylor and Francis Online.
The helium-cooled modular divertor with multiple jets (HEMJ) can potentially accommodate the large steady-state heat fluxes expected in future long-pulse magnetic fusion reactors. This work, which is part of the joint US-Japan PHENIX collaboration, describes recent results on a single HEMJ “finger” unit obtained in a helium loop operating at prototypical pressures of ~10 MPa. A new heater was used to increase the maximum coolant inlet temperature ≤ 400°C (vs. the prototypical value of 600°C) at incident heat fluxes ≤ 4.5 MW/m2 at these elevated temperatures. The effect of varying the jet-to-impingement surface separation distance H from 0.47 mm to 1.49 mm was also studied for mass flow rates ≤ 8 g/s. Numerical simulations of this HEMJ test section were also performed to obtain local information that could not be measured in the experiments.
Varying H within this range appears to have little effect on both the dimensionless heat transfer coefficient, or Nusselt number , and the dimensionless pressure drop across the HEMJ, or loss coefficient . The experimental measurements do, however, give lower after re-calibration of the differential pressure transducer; these results are now in better agreement with numerical predictions compared with previous experimental data. The experimental results obtained at higher and for are, however, lower than those predicted by a correlation for obtained from extensive measurements taken at lower temperatures in the same facility. These initial results require further examination because they are contradicted by the numerical predictions. If these results are valid, they suggest that the maximum heat flux that can be accommodated by a divertor module may be lower than expected.