ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
B. Zhao, S. A. Musa, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 294-299
Technical Paper | doi.org/10.1080/15361055.2017.1333827
Articles are hosted by Taylor and Francis Online.
The helium-cooled modular divertor with multiple jets (HEMJ) can potentially accommodate the large steady-state heat fluxes expected in future long-pulse magnetic fusion reactors. This work, which is part of the joint US-Japan PHENIX collaboration, describes recent results on a single HEMJ “finger” unit obtained in a helium loop operating at prototypical pressures of ~10 MPa. A new heater was used to increase the maximum coolant inlet temperature ≤ 400°C (vs. the prototypical value of 600°C) at incident heat fluxes ≤ 4.5 MW/m2 at these elevated temperatures. The effect of varying the jet-to-impingement surface separation distance H from 0.47 mm to 1.49 mm was also studied for mass flow rates ≤ 8 g/s. Numerical simulations of this HEMJ test section were also performed to obtain local information that could not be measured in the experiments.
Varying H within this range appears to have little effect on both the dimensionless heat transfer coefficient, or Nusselt number , and the dimensionless pressure drop across the HEMJ, or loss coefficient . The experimental measurements do, however, give lower after re-calibration of the differential pressure transducer; these results are now in better agreement with numerical predictions compared with previous experimental data. The experimental results obtained at higher and for are, however, lower than those predicted by a correlation for obtained from extensive measurements taken at lower temperatures in the same facility. These initial results require further examination because they are contradicted by the numerical predictions. If these results are valid, they suggest that the maximum heat flux that can be accommodated by a divertor module may be lower than expected.