ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
M. Yoda, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 285-293
Technical Paper | doi.org/10.1080/15361055.2017.1333825
Articles are hosted by Taylor and Francis Online.
Developing ways to effectively remove the extremely high heat fluxes incident on the plasma-facing components is an important challenge for magnetic fusion energy (MFE). In most cases, the target plates of the divertor, which removes helium ash and other impurities from the core plasma, are subject to the most extreme conditions, with steady-state incident heat fluxes of at least 10 MW/m2. Starting from the early 1990s, a variety of divertor designs with target plates of tungsten (W), cooled for the most part by impinging jets of helium (He), have been investigated.
This paper reviews and discusses a number of these impinging-jet concepts, including the modular He-cooled finger-type configurations developed by the Karlsruhe Institute of Technology (KIT), as well as the T-tube divertor, the helium-cooled flat-plate (HCFP) divertor, and the combined plate/finger divertor, all evaluated as part of the ARIES studies. Over the last 15 years, a number of studies have shown that the steady-state thermal and structural performance of single units of a number of these divertor designs can be evaluated with reasonable accuracy under prototypical conditions using a combination of numerical simulations and experimental studies. The helium-cooled modular jet (HEMJ) design has been successfully tested at incident heat fluxes as great as 13 MW/m2 at prototypical conditions. Although it remains unclear how much neutron irradiation damage will affect W, or other armor materials, He jet-impingement cooling is a leading candidate for resolving power exhaust heat removal issues in plasma-material interactions.