ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
G. L. Kulcinski, Ross F. Radel, Andrew Davis
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 248-254
Technical Paper | doi.org/10.1080/15361055.2017.1333861
Articles are hosted by Taylor and Francis Online.
A near term, low cost 14 MeV neutron materials test facility has been designed that allows significant radiation damage (dpa, appm He, etc.) levels to be achieved typical of those that will be experienced in DT Demonstration or commercial DT power plants. The design described in this paper produces peak damage levels of ≈4–6 dpa/fpy in 15 cm3 and has ≈600 cm3 test volume covering the damage range from 1 to 6 dpa/fpy. The total active tritium inventory in the test facility is less than 1 g and the overall construction costs are also roughly unchanged from an earlier (2015) design. The time to initial operation remains at ≈4 years from the start of construction because it builds on an on-going project for radioisotope production already under construction. This latest facility design has the possibility to provide a 2 MW-y/m2, 14 MeV neutron exposure to first wall materials in less than 4 fpy’s of operation.