ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
M. Osakabe, Y. Takeiri, T. Morisaki, G. Motojima, K. Ogawa, M. Isobe, M. Tanaka, S. Murakami, A. Shimizu, K. Nagaoka, H. Takahashi, K. Nagasaki, H. Takahashi, T. Fujita, Y. Oya, M. Sakamoto, Y. Ueda, T. Akiyama, H. Kasahara, S Sakakibara, R. Sakamoto, M. Tokitani, H. Yamada, M. Yokoyama, Y. Yoshimura, LHD Experiment Group
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 199-210
Technical Paper | doi.org/10.1080/15361055.2017.1335145
Articles are hosted by Taylor and Francis Online.
Achievement of reactor relevant plasma condition in Helical type magnetic devices and exploration in its related plasma physics and fusion engineering are the aim of the Large Helical Device (LHD) project. In the recent experiments on LHD, we have achieved ion-temperature of 8.1 keV at 1 × 1019 m−3 by the optimization of wall conditioning using long pulse discharge by Ion Cyclotron Heating (ICH). The electron temperature of 10 keV at 1.6 × 1019 m−3 was also achieved by the optimization of Electron Cyclotron Heating (ECH). For further improvement in plasma performance, the upgrade of the Large Helical Device (LHD), including the deuterium experiment, is planned. In this paper, the recent achievements on LHD and the upgrade of LHD are described.