ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Haifei Deng, Desheng Cheng, Weihua Wang, Kaiping Li, Bo Shi, Jinhong Yang
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 188-198
Technical Note | doi.org/10.1080/15361055.2017.1320495
Articles are hosted by Taylor and Francis Online.
The Helium (He) gas Cooled Ceramic Breeder (HCCB) test blanket module (TBM) is the primary option of the Chinese TBM program. In order to enhance the cooling ability of the first wall (FW) of the HCCB TBM and reduce the circulation power, a binary mixtures gas of He gas and additive CO2 deserves to be another option for the coolant of the blanket, based on high temperature gas-cooled reactors which are a generation-IV fission reactor concept, when it is reported that forced convective heat transfer can be enhanced by means of binary mixing with unreactive gas (e.g., CO2, molecular weight 44). This technique can significantly enhance the plant’s overall efficiency and reduce the cost of electricity. In order to evaluate the cooling performance of the He/CO2 binary mixtures gas and its circulation power in the FW of the HCCB TBM, a three-dimensional computational fluid dynamics (CFD) numerical simulation, combined experimental research method is applied. The results reveal that under the condition of the cooling requirements of the FW (e. g., maximum temperature, radial temperature gradient) similar to the pure He gas, the flow velocity and circulation power of the He/CO2 binary mixtures gas (mole fraction 0.4) are reduced by 70% and 87%, respectively. It implies that the thermal efficiency of a He-cooled blanket system can be fairly enhanced by means of this technique. In the near future experiment plan, it should be tested to validate the correlative cooling scheme of the HCCB TBM, in which the pure He gas and He/CO2 binary mixtures gas are used as coolant, respectively, at our High-Pressure Helium-Cooled Loop facility. The CFD numerical results will be selected as the reference for the experiments. A new approach may be provided for cooling the high heat flux components of a fusion reactor.