ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Tadas Kaliatka, Eugenijus Uspuras, Algirdas Kaliatka
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 176-187
Technical Note | doi.org/10.1080/15361055.2017.1320496
Articles are hosted by Taylor and Francis Online.
An event of water coolant ingress into the vacuum vessel (VV) is one of the most important events leading to severe consequences in nuclear fusion reactors. The ingress of coolant to the VV could appear due to coolant pipe rupture of in-vessel components. Any damage of in-vessel components could lead to water ingress and may lead to pressure increase and possible damage of the VV. Therefore, it is important to understand thermohydraulic processes in the VV during the ingress of coolant event (ICE) to prevent overpressurization of the VV. This technical note updates the developed Wendelstein 7-X (W7-X) model in accordance with the experience gained from the modeling of ICE experiments. Calculation results using the updated model are compared with the results obtained using an older model and the results of other researchers. The calculation results of the updated W7-X model show a much smaller pressure increase rate in the VV compared to the old model. In order to find the maximal area of partial break, which increases pressure in the VV but does not reach burst disk activation pressure (no steam release from the VV to the environment), the best-estimate approach is provided. The results of the analysis reveal that partial break using the updated W7-X model could be much bigger than what was considered before.