ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Tadas Kaliatka, Eugenijus Uspuras, Algirdas Kaliatka
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 176-187
Technical Note | doi.org/10.1080/15361055.2017.1320496
Articles are hosted by Taylor and Francis Online.
An event of water coolant ingress into the vacuum vessel (VV) is one of the most important events leading to severe consequences in nuclear fusion reactors. The ingress of coolant to the VV could appear due to coolant pipe rupture of in-vessel components. Any damage of in-vessel components could lead to water ingress and may lead to pressure increase and possible damage of the VV. Therefore, it is important to understand thermohydraulic processes in the VV during the ingress of coolant event (ICE) to prevent overpressurization of the VV. This technical note updates the developed Wendelstein 7-X (W7-X) model in accordance with the experience gained from the modeling of ICE experiments. Calculation results using the updated model are compared with the results obtained using an older model and the results of other researchers. The calculation results of the updated W7-X model show a much smaller pressure increase rate in the VV compared to the old model. In order to find the maximal area of partial break, which increases pressure in the VV but does not reach burst disk activation pressure (no steam release from the VV to the environment), the best-estimate approach is provided. The results of the analysis reveal that partial break using the updated W7-X model could be much bigger than what was considered before.