ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Maxwell D. Hill, Weston M. Stacey
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 162-175
Technical Note | doi.org/10.1080/15361055.2017.1320494
Articles are hosted by Taylor and Francis Online.
Investigations of tokamak dynamics, especially as they relate to the challenge of burn control, require an accurate representation of energy and particle confinement times. While the ITER-98 scaling law represents a correlation of data from a wide range of tokamaks, confinement scaling laws will need to be fine-tuned to specific operational features of specific tokamaks in the future. A methodology for developing, by regression analysis, tokamak- and configuration-specific confinement tuning models is presented and applied to DIII-D as an illustration. It is shown that inclusion of tuning parameters in the confinement models can significantly enhance the agreement between simulated and experimental temperatures relative to simulations in which only the ITER-98 scaling law is used. These confinement tuning parameters can also be used to represent the effects of various heating sources and other plasma operating parameters on overall plasma performance and may be used in future studies to inform the selection of plasma configurations that are more robust against power excursions.