ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
C. B. Yeamans, D. L. Bleuel
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 120-128
Technical Paper | doi.org/10.1080/15361055.2017.1320499
Articles are hosted by Taylor and Francis Online.
In need of a spatially resolved neutronic measurement to better understand the implosion physics of inertial-confined fusion, the National Ignition Facility (NIF) developed a distributed Flange-mounted Neutron Activation Diagnostic system (FNAD). FNAD measures primary deuterium-tritium (D-T) fusion neutron fluence at 20 points surrounding the target chamber using the 90Zr(n,2n)89Zr reaction, utilizing the 12.1-MeV reaction threshold to minimize signal from spurious neutron sources. Through careful design of the measurement systematics, the relative ratios of fluence at those 20 points are measured to within 2%. This precision is sufficient to allow interpretation of the resulting neutron sky as a map of scattering mass areal density (ρR) of the cold compressed D-T fuel surrounding the nuclear burn. Controlling the shape of this fuel during assembly is essential to achieving optimal implosion performance. This paper details the system design and locational deployment, measurement techniques, and calibration procedure. It also outlines data analysis and reduction, and data presentation methods used during the National Ignition Campaign and High-Foot Campaign.