ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
J. Guasp, F. Castejón, I. Pastor, R. F. Álvarez-Estrada
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 99-119
Technical Paper | doi.org/10.1080/15361055.2017.1320497
Articles are hosted by Taylor and Francis Online.
The inverse problem for Thomson scattering (TS), that is, finding the electron distribution function (EDF), not restricted to be Maxwellian or isotropic, from the observation of the scattered spectrum, is addressed. Based on previous results by the authors, a new parallel FORTRAN code, INVERT, has been developed that allows to estimate the free parameters of a wide class of distribution functions by fitting experimental or numerical (synthetic) spectra using a variant of the simplex method. The application of these techniques to the extraction of non-Maxwellian or anisotropic features in the electron distribution function is analyzed in detail. The performance of the new code on noisy synthetic spectra and its capabilities to quantitatively discriminate among several competing EDFs modeling data are discussed. The issues of uniqueness (or nonuniqueness) of the inverse problem in case of multiparameter distribution functions are discussed. In such cases, the prospects of multiple diagnostics synthesis, or having several simultaneous scattering chords to remove the ambiguity in the reconstruction of the EDF, are also discussed. Some comments on the requirements of a TS system able to detect nonthermal or anisotropic effects are also included.