ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. Guasp, F. Castejón, I. Pastor, R. F. Álvarez-Estrada
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 99-119
Technical Paper | doi.org/10.1080/15361055.2017.1320497
Articles are hosted by Taylor and Francis Online.
The inverse problem for Thomson scattering (TS), that is, finding the electron distribution function (EDF), not restricted to be Maxwellian or isotropic, from the observation of the scattered spectrum, is addressed. Based on previous results by the authors, a new parallel FORTRAN code, INVERT, has been developed that allows to estimate the free parameters of a wide class of distribution functions by fitting experimental or numerical (synthetic) spectra using a variant of the simplex method. The application of these techniques to the extraction of non-Maxwellian or anisotropic features in the electron distribution function is analyzed in detail. The performance of the new code on noisy synthetic spectra and its capabilities to quantitatively discriminate among several competing EDFs modeling data are discussed. The issues of uniqueness (or nonuniqueness) of the inverse problem in case of multiparameter distribution functions are discussed. In such cases, the prospects of multiple diagnostics synthesis, or having several simultaneous scattering chords to remove the ambiguity in the reconstruction of the EDF, are also discussed. Some comments on the requirements of a TS system able to detect nonthermal or anisotropic effects are also included.