ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Bin Zhang, Shi Li, Sheng Zhang, Yebin Chen, Liqun Hu
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 91-98
Technical Note | doi.org/10.1080/15361055.2017.1319717
Articles are hosted by Taylor and Francis Online.
The Radial X-ray camera (RXC) is a diagnostic for the ITER tokamak. During baking and operation of ITER, the detector environment temperature will be up to 240°C, whereas the detectors must be kept below 70°C. Therefore, cooling of the detectors mounted in the camera is critical and necessary. In order to verify the effect of gas cooling for RXC detectors, a relevant test has been designed. Since the outcome of this test will be the supply of the RXC cooling system, the ITER Instrument and Control strategy was selected. Therefore, a Data Acquisition (DAQ) system was developed based on the Experimental Physics and Industrial Control System (EPICS) framework, which implements functions for real-time data acquisition, temperature control, supervision, and archiving. Moreover, it is easy to configure control information according to user requirements. Also, some linear devices were used in the reconfiguration of EPICS. This technical note presents the entire architecture of the DAQ system and the details on the design of EPICS. The system has been implemented, and has provided reliable data for the experiment.