ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
G. J. Hartwell, S. F. Knowlton, J. D. Hanson, D. A. Ennis, D. A. Maurer
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 76-90
Technical Paper | doi.org/10.1080/15361055.2017.1291046
Articles are hosted by Taylor and Francis Online.
The Compact Toroidal Hybrid (CTH) is a low-aspect-ratio (), low-beta (%) torsatron with a major radius of . CTH is operable as a pure stellarator, but most research on this device is conducted with hybrid discharges in which a toroidal plasma current is driven in order to study magnetohydrodynamic instabilities and disruptions in current-carrying stellarator plasmas. The vacuum helical field of CTH is produced by a continuously wound helical coil with poloidal and toroidal periodicities of and , respectively. The maximum on-axis toroid al magnetic field is . The helical coil encloses a circular vacuum vessel of major radius = 0.75 m with a circular cross section of minor radius 0.29 m. A toroidal plasma current up to 80 kA is produced with an ohmic heating (OH) transformer. The average plasma radius is typically 0.20 m. Five independently controllable magnet coil sets produce the base stellarator magnetic field configuration. With 15-kW electro.n cyclotron heating at the fundamental frequency, densities of and electron temperatures of 20 eV are achieved. With the addition of OH, densities reach with temperatures of . Ten motor/generator power supplies provide up to 10 MW of power to energize the magnet set providing the equilibrium field, and a capacitor bank provides the pulsed current for the OH system. Design considerations, constraints, and construction techniques of the CTH magnet coils, vacuum vessel, and support structure are discussed, and an operational overview is given.