ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Zongwei Wang, Qi Wang, Xiaojun Ma, Dangzhong Gao, Xiaoshan He, Jie Meng, Kai Jiang, Yong Hu, Qianqian Gu, Xue Chen, Weichao Tong, Xing Tang
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 69-75
Technical Paper | doi.org/10.1080/15361055.2017.1291045
Articles are hosted by Taylor and Francis Online.
An X-ray equivalent absorption technique is developed to determine the doped concentrations of the inertial confinement fusion shells. Doped atoms in the shells are used to increase the opacity for radiation, to improve the absorptive capacity of the shell wall for X-ray, and to restrain the growth of hydromechanics instability. The doped concentrations in the shells are difficult to determine for the relatively thick shell wall and the spatial resolution. A novel model is proposed to determine the doped concentrations by a theory of X-ray equivalent absorption. The advantage of this model is that optical density (D) and the exposure curve [D = Φ(I)] of film plates are not necessary to calculate the doped concentrations. The model is validated with a thickness error of 2% by the polypropylene step wedge, the aluminum step wedge, and the polystyrene sphere. The error of results for doped concentration between this method and the energy-dispersive spectroscopy method is less than 0.1 at. %. The uncertainty also is analyzed and the combined expanded uncertainty is better than 0.2 at. % for the Ge-doped glow discharge polymer shell (k = 2).