ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Zongwei Wang, Qi Wang, Xiaojun Ma, Dangzhong Gao, Xiaoshan He, Jie Meng, Kai Jiang, Yong Hu, Qianqian Gu, Xue Chen, Weichao Tong, Xing Tang
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 69-75
Technical Paper | doi.org/10.1080/15361055.2017.1291045
Articles are hosted by Taylor and Francis Online.
An X-ray equivalent absorption technique is developed to determine the doped concentrations of the inertial confinement fusion shells. Doped atoms in the shells are used to increase the opacity for radiation, to improve the absorptive capacity of the shell wall for X-ray, and to restrain the growth of hydromechanics instability. The doped concentrations in the shells are difficult to determine for the relatively thick shell wall and the spatial resolution. A novel model is proposed to determine the doped concentrations by a theory of X-ray equivalent absorption. The advantage of this model is that optical density (D) and the exposure curve [D = Φ(I)] of film plates are not necessary to calculate the doped concentrations. The model is validated with a thickness error of 2% by the polypropylene step wedge, the aluminum step wedge, and the polystyrene sphere. The error of results for doped concentration between this method and the energy-dispersive spectroscopy method is less than 0.1 at. %. The uncertainty also is analyzed and the combined expanded uncertainty is better than 0.2 at. % for the Ge-doped glow discharge polymer shell (k = 2).