ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Zongwei Wang, Qi Wang, Xiaojun Ma, Dangzhong Gao, Xiaoshan He, Jie Meng, Kai Jiang, Yong Hu, Qianqian Gu, Xue Chen, Weichao Tong, Xing Tang
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 69-75
Technical Paper | doi.org/10.1080/15361055.2017.1291045
Articles are hosted by Taylor and Francis Online.
An X-ray equivalent absorption technique is developed to determine the doped concentrations of the inertial confinement fusion shells. Doped atoms in the shells are used to increase the opacity for radiation, to improve the absorptive capacity of the shell wall for X-ray, and to restrain the growth of hydromechanics instability. The doped concentrations in the shells are difficult to determine for the relatively thick shell wall and the spatial resolution. A novel model is proposed to determine the doped concentrations by a theory of X-ray equivalent absorption. The advantage of this model is that optical density (D) and the exposure curve [D = Φ(I)] of film plates are not necessary to calculate the doped concentrations. The model is validated with a thickness error of 2% by the polypropylene step wedge, the aluminum step wedge, and the polystyrene sphere. The error of results for doped concentration between this method and the energy-dispersive spectroscopy method is less than 0.1 at. %. The uncertainty also is analyzed and the combined expanded uncertainty is better than 0.2 at. % for the Ge-doped glow discharge polymer shell (k = 2).