ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
P. V. Subhash, Amit Kumar Singh, Hitesh Pandya, V. S. Divya, M. P. Aparna, T. K. Basitha Thanseem
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 49-59
Technical Paper | doi.org/10.1080/15361055.2016.1273692
Articles are hosted by Taylor and Francis Online.
For high-temperature tokamaks like ITER, electron cyclotron emission (ECE) measurements are expected to be affected by many factors like relativistic downshift, harmonics overlap, polarization scrambling, deviation of electron distribution from Maxwellian, etc. Many studies are already reported on the difference between ECE measurements and other measurements like Thomson scattering for existing high-temperature tokamaks like JET, TFTR, D-III-D, etc. As ITER is expected to reach a temperature of around 25 keV with a strong electron-ion coupling and additional heating, the deviation of the ECE radiation temperature from the electron temperature needs to be examined. This paper reports a parametric study on the effect of the presence of small superthermal populations on ECE measurements for ITER. A wide range of parametric space for superthermal parameters is used, assuming a bi-Maxwellian electron distribution, which obeys Kirchhoff law. The computational details and the results of the numerical studies are explained in this paper. Further, an attempt is also made to reconstruct the superthermal contributions from multiple oblique measurements, which is otherwise a difficult task. This reconstruction has been done through numerical calculations for two sets of measurements using detectors placed at same but opposite angles. Then, a scale factor is used to scale the difference between these two measurements to superthermal emission. The detailed procedure and possible physical explanations are presented. The dependence of this scale factor on the superthermal parameters is numerically studied, and a parametric equation is drafted between scale factor and superthermal parameters. The said equation contains two numerical constants, for which the values are numerically obtained from one set of simulations and verified with a number of calculations using different superthermal parameters.