ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. W. Yang, T. S. Li, T. Yi, C. K. Wang, M. Yang, W. M. Yang, S. Y. Liu, S. E. Jiang, Y. K. Ding
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 41-48
Technical Paper | doi.org/10.1080/15361055.2016.1273690
Articles are hosted by Taylor and Francis Online.
Electromagnetic pulses (EMPs) generated from lasers interacting with solid targets at the ShenGuang II laser facility were measured and analyzed in this work. The EMP radiations were related to the target geometries, where the strongest EMP signal with a magnitude of 103 V and duration of several dozens of nanoseconds resulted from the monopole flat coil and Au foil targets. The EMPs detected inside the laser facility were seriously affected by the chamber wall, which could reflect EMPs and prolong the signals with several typical pulsed peaks. This study was expected not only to provide basic information to interpret physical processes caused by laser irradiating targets but also to offer a path for electromagnetic interference shielding designs and protect the diagnostics from damage in inertial confinement fusion.