ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
L. El-Guebaly, L. Mynsberge, A. Davis, C. D’Angelo, A. Rowcliffe, B. Pint, ARIES-ACT Team
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 17-40
Technical Paper | doi.org/10.1080/15361055.2016.1273669
Articles are hosted by Taylor and Francis Online.
The ARIES team has examined a multitude of fusion concepts over a period of 25 years. In recent years, the team wrapped up the Advanced Research, Innovation, and Evaluation Study (ARIES) series by completing the detailed design of the ARIES–Advanced and Conservative Tokamak (ARIES-ACT2) power plant—a plant with conservative physics and technology, representing a tokamak with reduced-activation ferritic/martensitic (RAFM) structure and dual-coolant lead-lithium blanket. The integration of nuclear assessments (neutronics, shielding, and activation) is an essential element to ARIES-ACT2 success. This paper highlights the design philosophy of in-vessel components and characterizes several nuclear-related issues that have been addressed during the course of the study to improve the ARIES-ACT2 design: sufficient breeding of tritium to fuel the plasma, well-optimized in-vessel components that satisfy all design requirements and guarantee the shielding functionality of its radial/vertical builds, survivability of low-activation/radiation-resistant structural materials in 14-MeV neutron environment, activation concerns for RAFM and corrosion-resistant oxide-dispersion-strengthened alloys, and an integral approach to handle the mildly radioactive materials during operation and after decommissioning.