ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
L. El-Guebaly, L. Mynsberge, A. Davis, C. D’Angelo, A. Rowcliffe, B. Pint, ARIES-ACT Team
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 17-40
Technical Paper | doi.org/10.1080/15361055.2016.1273669
Articles are hosted by Taylor and Francis Online.
The ARIES team has examined a multitude of fusion concepts over a period of 25 years. In recent years, the team wrapped up the Advanced Research, Innovation, and Evaluation Study (ARIES) series by completing the detailed design of the ARIES–Advanced and Conservative Tokamak (ARIES-ACT2) power plant—a plant with conservative physics and technology, representing a tokamak with reduced-activation ferritic/martensitic (RAFM) structure and dual-coolant lead-lithium blanket. The integration of nuclear assessments (neutronics, shielding, and activation) is an essential element to ARIES-ACT2 success. This paper highlights the design philosophy of in-vessel components and characterizes several nuclear-related issues that have been addressed during the course of the study to improve the ARIES-ACT2 design: sufficient breeding of tritium to fuel the plasma, well-optimized in-vessel components that satisfy all design requirements and guarantee the shielding functionality of its radial/vertical builds, survivability of low-activation/radiation-resistant structural materials in 14-MeV neutron environment, activation concerns for RAFM and corrosion-resistant oxide-dispersion-strengthened alloys, and an integral approach to handle the mildly radioactive materials during operation and after decommissioning.