ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
A. N. Perevezentsev, L. A. Bernstein, L. A. Rivkis, I. G. Prykina, V. V. Aleksandrov, I. A. Ionessian, M. I. Belyakov, I. B. Kuprianov
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 1-16
Technical Paper | doi.org/10.1080/15361055.2016.1273659
Articles are hosted by Taylor and Francis Online.
The subject of this study is the evaluation of tritium outgassing and removal from metals such as tungsten, beryllium, stainless steel, and copper alloy. In addition, a composite sample assembled from tungsten, copper alloy, and stainless steel was also studied. Samples of individual materials and composite samples were of thicknesses and compositions representing the internal components of the ITER vacuum vessel. The samples of materials were loaded with tritium by exposure to a gaseous tritium-deuterium mixture (about 1:1) at a temperature of 473 K and a pressure of about 0.05 MPa. The rate of outgassing was measured at temperatures of about 295, 308, and 323 K under static or dynamic atmospheres either of ambient air or dry air or argon. The study allows recommendation of conditions for storage of in-vessel components and reduction of the rate of tritium outgassing. The metals’ samples were also subject to study of tritium removal by thermal desorption under purge with argon containing 5 vol % of hydrogen. The study has demonstrated that this detritiation procedure allows for removal of large portions of the tritium inventory and substantial reduction in tritium outgassing rates.