ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
Rudolf Neu, Arne Kallenbach, Karl Krieger, Volker Rohde, Joachim Roth
Fusion Science and Technology | Volume 44 | Number 3 | November 2003 | Pages 692-707
Technical Paper | ASDEX Upgrade | doi.org/10.13182/FST03-A408
Articles are hosted by Taylor and Francis Online.
Experiments dealing with plasma-wall interactions and first-wall materials comprise a significant part of the work program of ASDEX Upgrade. To elucidate carbon chemical erosion under reactor-relevant conditions, dedicated spectroscopic measurements were performed. These investigations are complemented with long-term erosion and deposition probes consisting of various materials, which are mounted at numerous locations inside the vacuum vessel. The codeposition of hydrogen with carbon below the divertor is studied in detail with long-term samples as well as with quartz microbalance measurements, which allow a discharge-resolved measurement of the layer growth. In parallel to the investigations on carbon, the behavior of tungsten plasma facing components (PFCs) and their influence on plasma performance is studied. In several experimental campaigns, the divertor as well as large parts of the PFCs in the main chamber were equipped with tungsten-coated tiles. Surface conditioning by applying a silicon layer (siliconization) was performed as a preexperiment of the tungsten program, and the results are compared to those of surface conditioning with boron (boronization).