ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. M. García-Regaña, F. Castejón, A. Cappa
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 219-226
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-A4074
Articles are hosted by Taylor and Francis Online.
Electron Bernstein waves (EBWs) have been confirmed as a suitable choice for plasma heating and current drive generation (electron Bernstein current drive) at densities where the O and X modes find cutoff values. In the present work, an estimation of the efficiency function of current generated for a relativistic distribution function is presented. The arbitrary large values of the refractive index, due to the EBW propagation properties, have also made necessary the expansion of our calculation up to any Larmor radius order. Particle trapping has been included considering the Okhawa effect, and the fractions of power absorbed by trapped and circulating particles separately have been estimated. Future work toward implementation of this method to the ray-tracing code used for realistic TJ-II ray trajectories (TRUBA) is also discussed.