ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
J.-P. Hogge, T. P. Goodman, S. Alberti, F. Albajar, K. A. Avramides, P. Benin, S. Bethuys, W. Bin, T. Bonicelli, A. Bruschi, S. Cirant, E. Droz, O. Dumbrajs, D. Fasel, F. Gandini, G. Gantenbein, S. Illy, S. Jawla, J. Jin, S. Kern, P. Lavanchy, C. Liévin, B. Marlétaz, P. Marmillod, A. Perez, B. Piosczyk, I. Pagonakis, L. Porte, T. Rzesnickl, U. Siravo, M. Thumm, M. Q. Tran
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 204-212
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-A4072
Articles are hosted by Taylor and Francis Online.
The European Union is working toward providing 2-MW, coaxial-cavity, continuous-wave (cw) 170-GHz gyrotrons for ITER. Their design is based on results from an experimental preprototype tube having a pulse length of several milliseconds, in operation at Forschungszentrum Karlsruhe (FZK) for several years now. The first industrial prototype tube was designed for cw operation but, in a first phase, aimed at a pulse length of 1 s at the European Gyrotron Test Facility in Lausanne, Switzerland, as part of a phased testing/development program (1 s, 60 s, cw). The first experimental results of the operation of this prototype gyrotron are reported here. The microwave generation was characterized at very short pulse length (<0.01 s) using a load on loan from FZK, and the highest measured output power was 1.4 MW, at a beam energy significantly lower than the design value (83 kV instead of 90 kV), limited by arcing in the tube. The radio-frequency (rf) beam profile was measured to allow reconstruction of the phase and amplitude profile at the window and to provide the necessary information permitting proper alignment of the compact rf loads prior to pulse extension. Arcs in the tube limited the pulse length extension to a few tens of milliseconds. According to present planning, the tube is going to be opened, inspected, and refurbished, depending on the results of the inspection, to allow testing of an improved version of the mode launcher and replacement of some subassemblies.