ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
W. A. Bongers, A. P. H. Goede, E. Westerhof, J. W. Oosterbeek, N. J. Doelman, F. C. Schüller, M. R. De Baar, W. Kasparek, W. Wubie, D. Wagner, J. Stober, TEXTOR Team
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 188-203
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-A4071
Articles are hosted by Taylor and Francis Online.
Neoclassical tearing modes (NTMs) deteriorate high-pressure tokamak plasma confinement and can be suppressed by electron cyclotron current drive (ECCD). In order to obtain efficient suppression, the ECCD power needs to be deposited at the center of an NTM magnetic island. To enhance efficiency, this power also needs to be synchronized in phase with the rotation of the island. The problem is that of real-time detection and precise localization of the island(s) in order to provide the feedback signal required to control the ECCD power deposition area with an accuracy of 1 to 2 cm. Existing schemes based on mode location, equilibrium reconstruction, and plasma profile measurements are limited in positional and temporal accuracy and moreover will become very complex when applied to ITER. To overcome these limitations, it is proposed to provide the feedback signal from electron cyclotron emission (ECE) measurements taken along the identical line of sight as traced by the incident ECCD millimeter-wave beam but in reverse direction. Experiments on TEXTOR have demonstrated a proof of principle. These measurements motivate the further development and the implementation of such an ECCD-aligned ECE system for NTM control in larger fusion machines. Possible implementation of such a system on ASDEX-Upgrade, based on waveguides equipped with a fast directional switch, is presented in this paper. Possible further development for ITER is also discussed.