ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Sibylle Günter, Hartmut Zohm
Fusion Science and Technology | Volume 44 | Number 3 | November 2003 | Pages 682-691
Technical Paper | ASDEX Upgrade | doi.org/10.13182/FST03-A407
Articles are hosted by Taylor and Francis Online.
Performance-limiting magnetohydrodynamic (MHD) instabilities on ASDEX Upgrade are discussed. In the conventional H-mode scenario, the main MHD performance limitation is found to be the neoclassical tearing mode (NTM). The onset of NTMs in ASDEX Upgrade scales with the poloidal ion gyroradius, in agreement with theoretical expectations. At higher values, NTMs occur in a more benign form, the frequently-interrupted-regime NTMs, which lead to a smaller confinement degradation than normal NTMs. Active control of NTMs by electron cyclotron current drive in the island has been demonstrated on ASDEX Upgrade. In advanced tokamak regimes with reversed shear, a variety of performance-limiting instabilities has been observed. The shear reversal zone can be unstable to double tearing modes or to infernal modes; both have been identified in ASDEX Upgrade. Due to the broad current profile in advanced tokamak discharges, the ideal external kink mode can be unstable at relatively low N 2; this is a main limitation to strongly reversed shear discharges with peaked pressure profiles. Finally, it is shown that fast-particle-driven modes such as fishbones can also have beneficial effects, such as providing stationary current profiles or triggering internal transport barriers.