ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Joseph Dalessio, Eugenio Schuster, David Humphreys, Michael Walker, Yongkyoon In, Jin-Soo Kim
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 163-179
Technical Paper | doi.org/10.13182/FST09-A4069
Articles are hosted by Taylor and Francis Online.
In this work, synthesis is employed to stabilize a model of the resistive wall mode (RWM) instability in the DIII-D tokamak. The General Atomics/FAR-TECH DIII-D RWM model, which replaces the spatial perturbation of the plasma with an equivalent perturbation of surface current on a spatially fixed plasma boundary, is used to derive a linear state-space representation of the mode dynamics. The spatial and current perturbations are equivalent in the sense that they both produce the same magnetic field perturbation at surrounding conductors. The key term in the model characterizing the magnitude of the instability is the time-varying uncertain parameter cpp, which is related to the RWM growth rate . Taking advantage of the structure of the state matrices, the model is reformulated into a robust control framework, with the growth rate of the RWM modeled as an uncertain parameter. A robust controller that stabilizes the system for a range of practical growth rates is proposed. The controller is tested through simulations, demonstrating significant performance increase over the classical proportional-derivative controller, extending the RWM growth rate range for which the system is stable and satisfies predefined performance constraints, and increasing the level of tolerable measurement noise. The simulation study shows that the proposed model-based DK controllers can successfully stabilize the mode when the growth rate varies over time during the discharge because of changes in the operating conditions such as pressure and rotation. In terms of robust stability, this method eliminates the need for growth-rate online identification and controller scheduling.Selected Full Papers from15th WORKSHOP ON