ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
E. Loomis, S. R. Greenfield, S. N. Luo, R. Johnson, T. Shimada, J. Cobble, A. Seifter, D. S. Montgomery
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 152-162
Technical Paper | doi.org/10.13182/FST09-A4068
Articles are hosted by Taylor and Francis Online.
Single crystals of beryllium were illuminated with nanosecond X-ray pulses generated from laser irradiated (~1.5 × 1014 W/cm2) gold targets. The characteristic gold M-band centered at 2.5 keV was measured by time-integrated transmission grating spectroscopy and a time-resolved (spectrally integrated) X-ray photodiode through beryllium targets of various thickness. Approximately decaying exponential temperature profiles were predicted to be induced in 100- and 160-m-thick single crystal targets producing nearly instant surface motion as measured by free surface velocity interferometry. This temperature profile gave rise to free surface (opposite to drive laser surface) velocity histories in a c-axis single crystal and a (10[overbar]10) single crystal in which large initial acceleration gave way to lower (ramped) acceleration due to the internal temperature gradient. A smooth rise to the peak velocity was then followed by a sharp release originating from the free surface nearest to the laser drive. Differences between the velocities in each of these regions were found between the two single crystals investigated, which were due to the thermal expansion properties as a function of direction (including plasticity). These results can be used to predict the behavior of preheated polycrystalline targets relevant to instability seeding in inertial confinement fusion ablators.