ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Josef Neuhauser, Hans-Stephan Bosch, David Coster, Albrecht Herrmann, Arne Kallenbach
Fusion Science and Technology | Volume 44 | Number 3 | November 2003 | Pages 659-681
Technical Paper | ASDEX Upgrade | doi.org/10.13182/FST03-A406
Articles are hosted by Taylor and Francis Online.
An overview of edge and divertor physics research on ASDEX Upgrade of relevance for next-step fusion devices like ITER is presented. The results described were primarily obtained in lower single-null divertor configurations with three consecutive bottom divertor designs, starting from an initial open divertor (Div I) over the closed LYRA configuration (Div II), optimized for low-triangularity single-null equilibria, to the presently operational variant Div IIb, fitting a large variety of plasma shapes. The upper, geometrically open divertor structure remained essentially unchanged. A dedicated diagnostics system in combination with advanced plasma control scenarios and extensive numerical modeling allowed for a detailed analysis of edge and divertor physics mechanisms. Main chamber edge profiles exhibit a double structure, especially pronounced in high-performance H-mode plasmas. While radial transport inside and across the separatrix is governed by critical gradients, the cold scrape-off layer wing shows rapid diffusion or even outward drift, probably related to intermittent crossfield transport. The divertor behavior has been studied for the different divertor geometries and for all operational regimes of interest. Closed divertor operation enhances divertor recycling and pumping, reduces the power load on target plates by increased upstream losses, and facilitates onset of plasma detachment. The transient power load during type I ELMs, however, remains high and problematic, while the small type III ELMs, appearing, for example, in radiative discharge scenarios, and especially the type II ELMs are nearly invisible on the target heat flux. Despite this strong effect of divertor geometry on the divertor behavior, its direct effect on core confinement remains small.