ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
A. Bruschi, W. Bin, S. Cirant, G. Granucci, S. Mantovani, A. Moro, S. Nowak
Fusion Science and Technology | Volume 55 | Number 1 | January 2009 | Pages 94-107
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-27
Articles are hosted by Taylor and Francis Online.
The development of electron cyclotron resonance heating (ECRH)-electron cyclotron current drive (ECCD) as a tool for suppression of plasma instabilities requires that the millimeter-wave beams used for testing magnetohydrodynamic (MHD) stabilization schemes for ITER be able to follow magnetic island position in real time. In the FTU tokamak, the design of a new ECRH fast-steerable launcher will enable a fast-controlled deposition at a precise poloidal location and the inclusion of the mirror motion in a feedback loop aimed at MHD stabilization. Two of the four existing transmission lines will be switched to the new launcher located in a different equatorial port. It will launch two independent beams with radius in the plasma changeable between 17 and 28 mm, in order to control the deposited power density. Real-time control of the poloidal steering requires high acceleration, speed, and positioning precision of the last mirror. Additionally, oblique toroidal injection at precise angles will allow current profile shaping through controlled ECCD and heating of overdense plasmas (ne > 2.4 × 1020 m-3) using electron Bernstein waves. For optimal O-X conversion, the required toroidal angle, estimated with dedicated beam-tracing calculations, is close to ±38.5 deg, near the upper limit in the toroidal steering angle. The launch requirements and their impact on the launcher design phase are presented in the paper.