ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
A. Collazos, V. S. Udintsev, R. Chavan, F. Felici, F. Dolizy, M. A. Henderson, H. Shidara
Fusion Science and Technology | Volume 55 | Number 1 | January 2009 | Pages 84-93
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-A4056
Articles are hosted by Taylor and Francis Online.
The aim of the ITER electron cyclotron heating and current drive upper launcher (UL) is to control magnetohydrodynamic activity in the plasma, in particular neoclassical tearing modes, requiring a narrow and peaked deposition of the radio-frequency (rf) power.The millimeter-wave (mm-wave) system of the UL is optimized to ensure that the eight rf beams are all focused to a small beam width at the resonance location. The present design uses two mitre bends per beam and a focusing mirror for each set of four beams, orientating each set onto a single steering mirror (SM) to inject it into the plasma. The SM is rotated using a frictionless and backlash free pneumo-mechanical system. A first prototype of the SM has been constructed to demonstrate the manufacturability and the actuation principle and to develop an adequate control strategy.A test program has been developed to ensure the integrity of the launcher from the pre-build-to-print design phase (research and development) up to the tests after maintenance.This paper presents a general overview of the system, a description of the progress in the mm-wave optical layout, low-power tests, alignment specifications of the mm-wave components, and SM capabilities to meet the ITER requirements.