ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
F. Albajar, M. Bornatici, F. Engelmann, A. B. Kukushkin
Fusion Science and Technology | Volume 55 | Number 1 | January 2009 | Pages 76-83
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-A4055
Articles are hosted by Taylor and Francis Online.
The codes SNECTR, CYTRAN, CYNEQ, and EXACTEC are compared in view of the calculation of the profile of the net electron cyclotron (EC) wave power density emitted for different electron temperature profiles and average temperatures of relevance for reactor-grade magnetoplasmas. The effects of either specularly or diffusely reflecting walls are assessed for a cylindrical plasma with circular cross-section, specular reflection, as assumed in EXACTEC, providing a lower bound to the net EC wave power losses in the hot plasma core (and therefore, as a rule, also to the total EC power loss) as well as to reabsorption in the edge plasma. The assumption of isotropy of the radiation intensity in the plasma that is adopted in both CYTRAN and CYNEQ (which cannot be justified a priori) is discussed and found to be adequate for strong diffuse reflection. However, it overestimates the net EC power loss in the plasma core for weakly as well as for specularly reflecting walls by up to 20%. The full transport code SNECTR (no longer in active use), for specular reflection, and the exact cylindrical code EXACTEC are in excellent agreement with each other while for strong diffuse reflection EXACTEC is found to underestimate the net EC power loss typically by 20%. EXACTEC, CYTRAN, and CYNEQ are confirmed to be well suited for use in systematic transport simulations of fusion plasmas.