ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jason Wilson, James Klein, Kirk Shanahan, Paul Korinko, Anita Poore
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 666-670
Technical Note | doi.org/10.1080/15361055.2017.1290943
Articles are hosted by Taylor and Francis Online.
In facilities containing tritium, all process equipment is contained in inerted gloveboxes operating at slightly negative pressure relative to the process rooms. The gloveboxes have recirculation systems which include a stripper system. The glovebox stripper systems capture tritium from the glovebox atmosphere to minimize facility emissions with the possibility of recovering the tritium.
Hydrogen isotopes released into the gloveboxes are converted to oxide form and removed from the glovebox atmosphere by the glovebox stripper systems – the intended function of these systems. Protiated water (and oxygen) enters the glovebox system in various ways. All water in the gloveboxes is ultimately removed by the stripper system molecular sieve beds which are then processed or disposed of as waste. The water and oxygen enter the glovebox in locations both internal and external to the gloveboxes. The majority of oxygen and water originates external to the gloveboxes in current facility operations.
This study evaluated approaches for water source reduction i.e. reducing the amount of water entering the gloveboxes. The second approach explored options to segregate or prevent the mixing of protiated water in the glovebox with the tritiated water formed as part of the tritium oxidation and capture process used to reduce facility emissions.