ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Jason Wilson, James Klein, Kirk Shanahan, Paul Korinko, Anita Poore
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 666-670
Technical Note | doi.org/10.1080/15361055.2017.1290943
Articles are hosted by Taylor and Francis Online.
In facilities containing tritium, all process equipment is contained in inerted gloveboxes operating at slightly negative pressure relative to the process rooms. The gloveboxes have recirculation systems which include a stripper system. The glovebox stripper systems capture tritium from the glovebox atmosphere to minimize facility emissions with the possibility of recovering the tritium.
Hydrogen isotopes released into the gloveboxes are converted to oxide form and removed from the glovebox atmosphere by the glovebox stripper systems – the intended function of these systems. Protiated water (and oxygen) enters the glovebox system in various ways. All water in the gloveboxes is ultimately removed by the stripper system molecular sieve beds which are then processed or disposed of as waste. The water and oxygen enter the glovebox in locations both internal and external to the gloveboxes. The majority of oxygen and water originates external to the gloveboxes in current facility operations.
This study evaluated approaches for water source reduction i.e. reducing the amount of water entering the gloveboxes. The second approach explored options to segregate or prevent the mixing of protiated water in the glovebox with the tritiated water formed as part of the tritium oxidation and capture process used to reduce facility emissions.