ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
Jason Wilson, James Klein, Kirk Shanahan, Paul Korinko, Anita Poore
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 666-670
Technical Note | doi.org/10.1080/15361055.2017.1290943
Articles are hosted by Taylor and Francis Online.
In facilities containing tritium, all process equipment is contained in inerted gloveboxes operating at slightly negative pressure relative to the process rooms. The gloveboxes have recirculation systems which include a stripper system. The glovebox stripper systems capture tritium from the glovebox atmosphere to minimize facility emissions with the possibility of recovering the tritium.
Hydrogen isotopes released into the gloveboxes are converted to oxide form and removed from the glovebox atmosphere by the glovebox stripper systems – the intended function of these systems. Protiated water (and oxygen) enters the glovebox system in various ways. All water in the gloveboxes is ultimately removed by the stripper system molecular sieve beds which are then processed or disposed of as waste. The water and oxygen enter the glovebox in locations both internal and external to the gloveboxes. The majority of oxygen and water originates external to the gloveboxes in current facility operations.
This study evaluated approaches for water source reduction i.e. reducing the amount of water entering the gloveboxes. The second approach explored options to segregate or prevent the mixing of protiated water in the glovebox with the tritiated water formed as part of the tritium oxidation and capture process used to reduce facility emissions.