ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Brian L. Ellis, H. Fritzsche, J. Patel, J. Lang, S. Suppiah
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 660-665
Technical Note | doi.org/10.1080/15361055.2017.1290952
Articles are hosted by Taylor and Francis Online.
Tritium betavoltaics are one of the family of nuclear batteries which convert natural radioactive decay from a radioisotope into electricity that can provide continuous power without the requirement for replacement or recharging. Tritium is ideally suited to this application due to its high specific activity, low shielding requirements and relatively high availability. Owing to safety and environmental concerns over tritium leakage, metal tritides films are preferred as tritium betavoltaic sources. Titanium hydride and deuteride films were studied as analogues to titanium tritide films. The quality of the films depended on the temperature of hydrogen loading as films loaded at elevated temperatures (>100 °C) were brittle and delaminated from the semiconductor substrate while those exposed to hydrogen at room temperature continued to adhere to the substrate. For the latter films, evidence of hydrogen isotope loss was observed when left under ambient conditions over the course of a few weeks.