ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Stephen T. Lam, John Stempien, Ronald Ballinger, Charles Forsberg
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 644-648
Technical Note | doi.org/10.1080/15361055.2017.1290945
Articles are hosted by Taylor and Francis Online.
Research characterizing hydrogen behavior on carbon has been primarily focused on collecting data at near-ambient temperatures and pressures for storage or for high volume applications such as fusion. Transport models of a pre-conceptual 236 MWt pebble-bed fluoride-salt-cooled, high-temperature reactor (PB-FHR) estimate that the production of tritium is relatively low resulting in partial pressures ranging between 0 and 20 Pa. Operating temperatures in an FHR range from 600 to 700°C. Under these operating conditions, the interaction between hydrogen and carbon is currently undefined. Since an FHR contains large quantities of carbon (reflectors, fuel, structures), the tritium behavior in carbon must be investigated in order to develop methods to control tritium release rates to the environment and material corrosion. Preliminary modeling and experiments demonstrate high performance is achieved in a carbon adsorption tower, which can reduce system release rates by greater than 99%. This research aims to (1) accurately measure hydrogen uptake and kinetics on different types of carbon at prototypic conditions and (2) use tritium transport modeling to demonstrate the potential of carbon materials for tritium capture and control.