ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Stephen T. Lam, John Stempien, Ronald Ballinger, Charles Forsberg
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 644-648
Technical Note | doi.org/10.1080/15361055.2017.1290945
Articles are hosted by Taylor and Francis Online.
Research characterizing hydrogen behavior on carbon has been primarily focused on collecting data at near-ambient temperatures and pressures for storage or for high volume applications such as fusion. Transport models of a pre-conceptual 236 MWt pebble-bed fluoride-salt-cooled, high-temperature reactor (PB-FHR) estimate that the production of tritium is relatively low resulting in partial pressures ranging between 0 and 20 Pa. Operating temperatures in an FHR range from 600 to 700°C. Under these operating conditions, the interaction between hydrogen and carbon is currently undefined. Since an FHR contains large quantities of carbon (reflectors, fuel, structures), the tritium behavior in carbon must be investigated in order to develop methods to control tritium release rates to the environment and material corrosion. Preliminary modeling and experiments demonstrate high performance is achieved in a carbon adsorption tower, which can reduce system release rates by greater than 99%. This research aims to (1) accurately measure hydrogen uptake and kinetics on different types of carbon at prototypic conditions and (2) use tritium transport modeling to demonstrate the potential of carbon materials for tritium capture and control.