ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Stephen T. Lam, John Stempien, Ronald Ballinger, Charles Forsberg
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 644-648
Technical Note | doi.org/10.1080/15361055.2017.1290945
Articles are hosted by Taylor and Francis Online.
Research characterizing hydrogen behavior on carbon has been primarily focused on collecting data at near-ambient temperatures and pressures for storage or for high volume applications such as fusion. Transport models of a pre-conceptual 236 MWt pebble-bed fluoride-salt-cooled, high-temperature reactor (PB-FHR) estimate that the production of tritium is relatively low resulting in partial pressures ranging between 0 and 20 Pa. Operating temperatures in an FHR range from 600 to 700°C. Under these operating conditions, the interaction between hydrogen and carbon is currently undefined. Since an FHR contains large quantities of carbon (reflectors, fuel, structures), the tritium behavior in carbon must be investigated in order to develop methods to control tritium release rates to the environment and material corrosion. Preliminary modeling and experiments demonstrate high performance is achieved in a carbon adsorption tower, which can reduce system release rates by greater than 99%. This research aims to (1) accurately measure hydrogen uptake and kinetics on different types of carbon at prototypic conditions and (2) use tritium transport modeling to demonstrate the potential of carbon materials for tritium capture and control.