ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Jennifer Lyons, Edward Love, Kim Burns
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 616-621
Technical Note | doi.org/10.1080/15361055.2017.1290944
Articles are hosted by Taylor and Francis Online.
TEACUP (Tritium Effluent Analysis and Core-follow, Up-to-date and Predictive) is a tritium management and supplemental core follow program that allows its users to account for reactor coolant system (RCS) tritium sources, generate discharge release estimates, account for downstream river flows and concentrations, and calculate corresponding uncertainties. The program incorporates water balance methodologies, tritium production estimates from secondary startup neutron sources, soluble boron content, reactor coolant system tritium measurements, and seasonal river flow estimates. TEACUP was designed specifically to facilitate the tracking of Tritium Producing Burnable Absorber Rod (TPBAR) permeation since measuring in-reactor permeation directly is not feasible and prediction methodologies have thus far been insufficient. A number of models, calculations, and correlations were developed in order to quantify all of the leading sources and losses of tritium in the RCS. By comparing all of the known contributors and discharges from the RCS tritium inventory to the measured RCS tritium concentration, the unaccounted for balance (within some band of uncertainty) can be attributed to TPBAR permeation. The tritium release estimates to the river generated from TEACUP are validated by comparing them to the measured tritium releases which match well and give confidence that TEACUP is tracking and accounting for tritium appropriately. An additional check on the methodologies within TEACUP is that the cycle-to-cycle trends for tritium permeation per TPBAR are consistent in behavior and the estimated release per TPBAR across each cycle is the same within their uncertainty.