ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Richard J. Pearson, Olivia Comsa, Liviu Stefan, William J. Nuttall
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 610-615
Technical Note | doi.org/10.1080/15361055.2017.1290931
Articles are hosted by Taylor and Francis Online.
The demand for tritium is expected to increase when ITER (the International Thermonuclear Experimental Reactor) begins operation in the mid-2020s. Romania is expected to detritiate its CANDU (Canada Deuterium Uranium) units at Cernavoda starting 2024, with the goal of improving radiological safety and reactor performance. Detritiation will result in a significant quantity of tritium being produced and thus Romania has an opportunity to supply tritium for fusion. In this assessment, ITER has been used as a reference device requiring tritium, as the projected tritium extraction schedule from Cernavoda aligns favourably with ITER operation. The findings suggest that Romania is capable of providing a total of 6.2 kg of tritium to ITER over its 20 year operation, generating a potential revenue of $186 M (USD). Opportunities associated with the supply of Romanian helium-3 are also considered as a hedging option, which has the potential to generate $120 M (USD) in the case of zero tritium sales. Greater involvement in future fission-fusion tritium-related activities through experience in tritium technologies is also discussed as a unique opportunity for Romania.